Scaling of the Surface Tension of Phase-Separated Polymer Solutions

B. Widom¹

Received April 4, 1988

The tension of the interface between the equilibrium phases of a phase-separated polymer solution is obtained in the simplest mean-field approximation from the functional equation for the composition profile of the interface. For temperatures T near the critical solution temperature T_c , i.e., for Flory parameter χ near χ_c , and for high degrees of polymerization N, the profile and tension scale with $x = N^{1/2}(\chi - \chi_c)$, just as do the compositions of the coexisting phases in mean-field approximation. The surface tension σ in the asymptotic limit $N \to \infty$, $\chi \to \chi_c$ at fixed x, is found to be given by $a^2\sigma/kT_c \sim (2c'/c)^{1/2} N^{-5/4}\Sigma(x)$, where a is the lattice spacing of an underlying lattice (or, roughly, the length of a monomer), c' and c are the vertical and total coordination numbers of the lattice, and $\Sigma(x) \sim 4\sqrt{2} x^{3/2}$ as $x \to 0$ and $\Sigma(x) \sim (6\sqrt{2}/5) x^{5/2}$ as $x \to \infty$. The latter implies that σ becomes independent of N as $N \to \infty$ at fixed T near T_c ; the former implies that σ becomes proportional to $N^{-1/2}(1 - T/T_c)^{3/2}$ as $T \to T_c$ at fixed $N \ge 1$, as found previously.

KEY WORDS: Scaling; surface tension; interfacial tension; critical solution point; phase separation; polymer solutions.

We ask how the tension σ of the interface between phases of a phaseseparated polymer solution depends on the degree of polymerization N and on the temperature T for large N and for T near the critical solution temperature T_c .

It was recently remarked⁽¹⁾ that in the simplest mean-field approximation the volume fraction of polymer ϕ would vary with distance through the interface za according to the functional equation

$$2(c'/c) \chi \Delta^2 \phi(z) = M(\phi) \tag{1}$$

¹ Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853.

The *a* in *za* is the lattice spacing of an underlying lattice, while *z* is an integer that indexes the lattice planes in the direction (vertical) perpendicular to the plane of the interface (horizontal); *c'* and *c* are, respectively, the vertical and total coordination numbers of the lattice (c' = 1 and c = 6 for a simple-cubic lattice); and Δ^2 is the second-difference operator: $\Delta^2 \phi(z) = \phi(z+1) - 2\phi(z) + \phi(z-1)$. The parameter χ is Flory's⁽²⁾

$$\chi = \Theta/2T \tag{2}$$

with Θ the theta temperature (independent of N and T). The function $M(\phi)$ in (1) is given by the Flory theory⁽²⁾ as

$$M(\phi) = \frac{1}{N} \ln \frac{\phi}{\phi'} - \ln \frac{1 - \phi}{1 - \phi'} - 2\chi(\phi - \phi')$$
(3)

with ϕ' the volume fraction of polymer in the more dilute phase. This ϕ' and ϕ'' (> ϕ'), the value of ϕ in the more concentrated phase, satisfy

$$0 = \ln \frac{1 - \phi''}{1 - \phi'} + \left(1 - \frac{1}{N}\right) (\phi'' - \phi') + \chi(\phi''^2 - \phi'^2)$$
(4)

and

$$0 = \frac{1}{N} \ln \frac{\phi''}{\phi'} - \ln \frac{1 - \phi''}{1 - \phi'} - 2\chi(\phi'' - \phi')$$
(5)

Because of (5), ϕ' in (3) may be replaced by ϕ'' , and also $M(\phi') = M(\phi'') = 0$. The interfacial tension σ will be obtained from (1) and (3)-(5) via the function⁽¹⁾ $h(\phi)$, given in Flory theory⁽²⁾ by

$$h(\phi) = \frac{1}{N} \phi \ln \frac{\phi}{\phi'} + (1 - \phi) \ln \frac{1 - \phi}{1 - \phi'} + \left(1 - \frac{1}{N}\right) (\phi - \phi') - \chi (\phi - \phi')^2$$
(6)

and related to $M(\phi)$ by

$$M(\phi) = dh(\phi)/d\phi \tag{7}$$

Because of (4) and (5), ϕ' in (6) may be replaced by ϕ'' , and also $h(\phi') = h(\phi'') = 0$.

The critical point is at $\phi = \phi_c$, $\chi = \chi_c$, with ϕ_c , χ_c given by⁽²⁾

$$\phi_c = (1 + N^{1/2})^{-1}, \qquad \chi_c = \frac{1}{2}(1 + N^{-1/2})^2$$
 (8)

Scaling of Surface Tension of Polymer Solutions

We seek from this mean-field theory a scaling formula⁽³⁾ for the tension σ , to hold in the asymptotic limit $N \to \infty$, $\chi \to \chi_c$. Corresponding scaling formulas for ϕ' and ϕ'' are known in both theory and experiment.⁽³⁻⁸⁾ The mean-field versions of these are required here. We define a scaling variable x,

$$x = N^{1/2} (\chi - \chi_c)$$
 (9)

and a scaled form ψ of ϕ ,

$$\psi = N^{1/2}\phi \tag{10}$$

and then let $N \to \infty$ and $\chi \to \chi_c$ at fixed x; whereupon (4) and (5), with (8), become

$$0 = -\frac{1}{3}(\psi_1^2 + \psi_1\psi_2 + \psi_2^2) - 1 + (1+x)(\psi_1 + \psi_2)$$
(11)

and

$$0 = \ln(\psi_2/\psi_1) + \frac{1}{2}(\psi_2^2 - \psi_1^2) - 2(1+x)(\psi_2 - \psi_1)$$
(12)

where $\psi_1 = N^{1/2} \phi'$ and $\psi_2 = N^{1/2} \phi''$. Equations (11) and (12) determine the two branches $\psi_1(x)$ and $\psi_2(x)$ of a scaled coexistence curve, shown in Fig. 1. Alternatively, they determine the inverse function $x(\psi)$. These scaling functions have the asymptotic properties

$$\psi_1(x) \sim 3x e^{-3x^2/2}, \qquad \psi_2(x) \sim 3x \qquad (x \to \infty)$$
 (13)

$$\psi_1(x) \sim 1 - (6x)^{1/2}, \qquad \psi_2(x) \sim 1 + (6x)^{1/2} \qquad (x \to 0)$$
 (14)

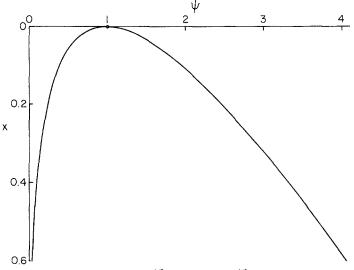


Fig. 1. Scaled coexistence curve, $\psi = N^{1/2}\phi$ versus $x = N^{1/2}(\chi - \chi_c)$. The branch $\psi > 1$ is $\psi_2(x)$, the branch $\psi < 1$ is $\psi_1(x)$. The critical point is at $\psi = 1$, x = 0.

Now we apply the same scaling, (9) and (10), to the functional equation for the composition profile, and again let $N \to \infty$ and $\chi \to \chi_c$. Then (1) with (3) becomes

$$(c'/c) N^{1/2} \Delta^2 \psi = \ln(\psi/\psi_1) + \frac{1}{2}(\psi^2 - \psi_1^2) - 2(1+x)(\psi - \psi_1)$$
(15)

By (12), we may replace ψ_1 by ψ_2 on the right-hand side of (15). We also still have $\Delta^2 \psi = 0$ when $\psi = \psi_1$ or ψ_2 , just as we had $\Delta^2 \phi = 0$ in (1) when $\phi = \phi'$ or ϕ'' . The relevant solution of (15) is such that $\psi \sim \psi_1$ or ψ_2 as $z \to \pm \infty$. The solution ψ is a function of a scaled distance $\zeta = N^{-1/4}z$. Thus, the change in ψ is small when z changes by 1; i.e., in the scaling regime the interface is diffuse; so the second difference $\Delta^2 \psi$ may be replaced by the second derivative $d^2 \psi/dz^2$ or by $N^{-1/2} d^2 \psi/d\zeta^2$. At the same time, in the same scaling regime, the function h in (6) becomes a scaled $H(\psi)$ given by

. ...

$$H(\psi) = N^{3/2}h(\phi)$$
(16)
= $\psi \ln(\psi/\psi_1) - \frac{1}{3}(\psi^3 - \psi_1^3) + \frac{1}{2}\psi(\psi^2 - \psi_1^2) - (\psi - \psi_1)$
- $(1+x)(\psi - \psi_1)^2$ (17)

Then

$$dH/d\psi = \ln(\psi/\psi_1) + \frac{1}{2}(\psi^2 - \psi_1^2) - 2(1+x)(\psi - \psi_1)$$
(18)

Because of (11) and (12) we may again replace ψ_1 by ψ_2 on the right-hand sides of (17) and (18), and H and $dH/d\psi$ vanish at $\psi = \psi_1$ and $\psi = \psi_2$. Equation (15) for the profile is now

$$(c'/c) d^2 \psi/d\zeta^2 = dH/d\psi \tag{19}$$

in scaled form.

The original functional equation (1) for the profile, with (2) and (7), and with the second difference replaced by the corresponding second derivative, is $(c'/c) k\Theta d^2\phi/dz^2 = kT dh(\phi)/d\phi$, with k Boltzmann's constant. From this form of it, we see that the interfacial tension may be obtained as⁽⁹⁾

$$a^{2}\sigma = (2c'k\Theta/c)^{1/2} \int_{\phi'}^{\phi''} [kTh(\phi)]^{1/2} d\phi$$
 (20)

But in this scaling regime, $T \sim \Theta \sim T_c$. Then, from (10) and (16),

$$a^{2}\sigma/kT_{c} = (2c'/c)^{1/2} N^{-5/4} \Sigma(x)$$
(21)

Scaling of Surface Tension of Polymer Solutions

where $\Sigma(x)$ is the scaling function

$$\Sigma(x) = \int_{\psi_1(x)}^{\psi_2(x)} H(\psi)^{1/2} \, d\psi \tag{22}$$

with $\psi_1(x)$, $\psi_2(x)$, and $H(\psi)$ given by (11), (12), and (17). Equation (21), with (22), is the scaling formula we sought.

The function $\Sigma(x)$ may be obtained numerically from (22), with $\psi_1(x)$ and $\psi_2(x)$ from (11) and (12) (or Fig. 1), and $H(\psi)$ from (17). It is shown in Fig. 2.

The critical behavior is found in the asymptotic limit $x \to 0$. In this limit, from (14), (17), and (22), and with $y = \psi - \psi_1$,

$$\Sigma(x) \sim (12)^{-1/2} \int_0^{2(6x)^{1/2}} y [2(6x)^{1/2} - y] \, dy \qquad (x \to 0)$$
(23)

SO

Fig. 2. Scaling function $\Sigma(x)$ for the surface tension (solid curve). The critical point is at the origin. The dashed curve is the $x \to 0$ asymptote: $\Sigma(x) \sim 4\sqrt{2} x^{3/2}$.

$$\Sigma(x) \sim 4\sqrt{2} x^{3/2} \qquad (x \to 0)$$
 (24)

This asymptote is shown as the dashed curve in Fig. 2. From (2), (9), (21), and (24), the surface tension in this limit is proportional to $N^{-1/2}(T_c - T)^{3/2}$, as already found in this version of the mean-field approximation.⁽¹⁾

In the other asymptotic limit, $x \to \infty$, we have from (13), (17), and (22),

$$\Sigma(x) \sim 6^{-1/2} \int_0^{3x} \psi^{1/2} (3x - \psi) \, d\psi = (6\sqrt{2}/5) \, x^{5/2} \qquad (x \to \infty)$$
(25)

Then, from (2), (9), and (21) again, the surface tension in this limit is proportional to $(T_c - T)^{5/2}$ and independent of N. That σ would be independent of N in this limit was predictable from (2), (9), (10), and (13), according to which $\phi' \sim 0$ and $\phi'' \sim 3(\chi - \chi_c) \sim \frac{3}{2}(1 - T/T_c)$. Thus, in this limit the dilute phase is essentially pure solvent, while the more concentrated phase has a composition that is independent of N at fixed T. The surface tension, which mainly reflects differences between the two bulk phases, must thus also become independent of N at fixed T in this limit.

The measurements of σ by Shinozaki *et al.*⁽¹⁰⁾ were designed to probe the critical region, $x \to 0$. We see from Fig. 2 that the low-x limit extends up to $x \approx \frac{1}{2}$; there $\Sigma(x) = 2.2$, which is 10% higher than the asymptote $4\sqrt{2}x^{3/2} = 2$. The data of Shinozaki *et al.* were indeed taken mostly at $x < \frac{1}{2}$; exceptions were some of the data on their sample of greatest N ($\approx 1 \times 10^4$), which extended to $x \approx 0.9$. At very large N it is hard to probe the critical region $[N^{1/2}(1 - T/T_c) \to 0]$ because of the practical difficulty of making measurements at sufficiently small $1 - T/T_c$.⁽¹⁰⁾

It would be of interest to extend such measurements to larger x (but still in the scaling regime, $N \ge 1$ and $1 - T/T_c \le 1$), to obtain a larger part

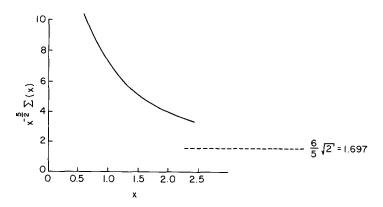


Fig. 3. Plot of $x^{-5/2}\Sigma(x)$ as a function of x, together with its large-x asymptotic limit $6\sqrt{2}/5 = 1.697...$

Scaling of Surface Tension of Polymer Solutions

of the scaling function $\Sigma(x)$. It will probably not be practical to reach the limit of very large x, where (in mean-field approximation) $\Sigma(x) \sim x^{5/2}$. In Fig. 3 we see that $x^{-5/2}\Sigma(x)$ is still far from its asymptotic limit of $6\sqrt{2}/5 = 1.697...$ even when x is as large as 2.5. Thus, to see behavior corresponding to that in (25) would probably require x > 10, say. But to be in the scaling regime at all probably requires $1 - T/T_c < 3 \times 10^{-2}$. Thus, to see the large-x behavior of σ would require $N^{1/2} > 2 \times 10/3 \times 10^{-2}$, or $N > 4 \times 10^5$, which is impractical. But it would be feasible to explore an intermediate range of x and to compare the results, at least qualitatively, with the $\Sigma(x)$ in Fig. 2.

On the theoretical side, it is important to go beyond this version of the mean-field theory to see what effect the corrections have on the scaling of the interfacial tension. Such correction^(1,11,12) should change the power of $1 - T/T_c$ in σ in the critical limit $(1 - T/T_c \rightarrow 0 \text{ at fixed } N \ge 1)$ from 3/2 to 1.26 and the power of N in that limit from -1/2 to -0.4; but its effect in the noncritical limit $(N \rightarrow \infty \text{ at fixed } 1 - T/T_c \le 1)$ is unknown. Although the present mean-field theory has some obvious defects,^(1,13) the surface tension scaling to which it has led may be the prototype of such scaling in more sophisticated theories.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation and the Cornell University Materials Science Center.

REFERENCES

- 1. B. Widom, J. Stat. Phys. 52:1343 (1988).
- 2. P. J. Flory, *Principles of Polymer Chemistry* (Cornell University Press, 1953), Chapters XII and XIII.
- 3. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979).
- 4. M. Daoud, J. Polymer Sci.: Polymer Symp. 61:305 (1977).
- 5. T. Dobashi, M. Nakata, and M. Kaneko, J. Chem. Phys. 72:6685 (1980).
- 6. T. Dobashi, M. Nakata, and M. Kaneko, J. Chem. Phys. 72:6692 (1980).
- 7. Y. Izumi and Y. Miyake, J. Chem. Phys. 81:1501 (1984).
- 8. I. C. Sanchez, J. Appl. Phys. 58:2871 (1985).
- 9. J. S. Rowlinson and B. Widom, *Molecular Theory of Capillarity* (Oxford University Press, 1982), Chapters 3 and 5.
- 10. K. Shinozaki, T. van Tan, Y. Saito, and T. Nose, Polymer 23:728 (1982).
- 11. T. Nose, Polymer J. (Japan) 8:96 (1976).
- 12. A. Vrij and G. J. Roebersen, J. Polymer Sci.: Polymer Phys. Ed. 15:109 (1977).
- 13. B. Widom, Physica A (1988), in press.