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Scaling of the Surface Tension of 
Phase-Separated Polymer Solutions 
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The tension of the interface between the equilibrium phases of a phase-separated 
polymer solution is obtained in the simplest mean-field approximation from the 
functional equation for the composition profile of the interface. For tem- 
peratures T near the critical solution temperature To, i.e., for Flory parameter X 
near Xc, and for high degrees of polymerization N, the profile and tension scale 
with x=N~/20~-Zc ), just as do the compositions of the coexisting phases in 
mean-field approximation. The surface tension a in the asymptotic limit N ~ oo, 
;(. -~ Xc at fixed x, is found to be given by a2a/kT,. ~ (2c'/c) l/z N-s/4•(x), where a 
is the lattice spacing of an underlying lattice (or, roughly, the length of a 
monomer), c' and c are the vertical and total coordination numbers of the 
lattice, and X(x)  is a scaling function, known for all x, with the asymptotic 
behavior Z (x )~4  ~ x 3/2 as x ~ 0  and X ( x ) ~  (6 x/2/5)x s/2 as x--* o0. The 
latter implies that a becomes independent of N as N --, ~ at fixed T near T c; the 
former implies that ~r becomes proportional to N 1/2(1 - T/Tc) 3/2 as T--, Tc at 
fixed N~> 1, as found previously. 

KEY WORDS: Scaling; surface tension; interfacial tension; critical solution 
point; phase separation; polymer solutions. 

W e  ask h o w  the  t ens ion  a of  the  in te r face  b e t w e e n  phases  of  a phase -  

s e p a r a t e d  p o l y m e r  so lu t i on  d e p e n d s  on  the  degree  of  p o l y m e r i z a t i o n  N and  

on  the  t e m p e r a t u r e  T for  la rge  N a n d  for T n e a r  the  cr i t ical  so lu t ion  

t e m p e r a t u r e  T c. 

I t  was recen t ly  r e m a r k e d ( l )  t ha t  in the  s imples t  mean- f i e ld  

a p p r o x i m a t i o n  the  v o l u m e  f rac t ion  o f  p o l y m e r  r w o u l d  v a r y  wi th  d i s t ance  

t h r o u g h  the  in te r face  za  a c c o r d i n g  to  the  func t i ona l  e q u a t i o n  

2 ( c ' / c )  Z A2r  = M(~b) (1) 
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The a in za is the lattice spacing of an underlying lattice, while z is an 
integer that indexes the lattice planes in the direction (vertical) perpen- 
dicular to the plane of the interface (horizontal); c' and c are, respectively, 
the vertical and total coordination numbers of the lattice (c' = 1 and c = 6 
for a simple-cubic lattice); and A 2 is the second-difference operator: 
A2~b(z) = 06(z + 1) - 206(z) + 06(z - 1 ). The parameter Z is Flory's (2) 

Z = O / 2 T  (2) 

with O the theta temperature (independent of N and T). The function M(06) 
in (1) is given by the Flory theory (:) as 

1 06 1--06 
M(06) = ~v In ~ -  In 1 - r  2Z(06- 06') (3) 

with r the volume fraction of polymer in the more dilute phase. This 06' 
and 06" (>06'), the value of 06 in the more concentrated phase, satisfy 

and 

0 = l n  1 -  - 0 6 9 +  - 06' ) (4) 

06" 1--06" 
0 =  ln-~7-1n 1_06-------7-2Z(06"-06') (5) 

Because of (5), 06' in (3) may be replaced by ~b", and also M ( r  
M(06") = 0. The interfacial tension a will be obtained from (1) and (3)-(5) 
via the function (1) h(O), given in Flory theory (z) by 

06 1-06 
h(06) =N06 l n ~ +  (1 -06)In 1 - 06-------7 

and related to M(O) by 

+ (1 - 1 )  (06- r  Z(06- 06') 2 (6) 

M(06) = dh(O)/dO (7) 

Because of (4) and (5), 06' in (6) may be replaced by 06", and also 
h( r  = h( r  = 0. 

The critical point is at 06 = ~bc, Z = Zc, with 06c, Zc given by (2) 

06 = ( l + N ~ / 2 )  ~, Z = � 8 9  ~/2)2 (8) 



We seek from this mean-field theory a scaling formula ~3) for the 
tension a, to hold in the asymptotic limit N-+ m, 7~ --+ 7~c- Corresponding 
scaling formulas for ~b' and ~b" are known in both theory and 
experiment. (3-8) The mean-field versions of these are required here. We 
define a scaling variable x, 

x = N'/Z()~ - Zc) (9) 

and a scaled form 0 of ~b, 

and 

0 = N1/aO (10) 

and then let N--* oo and Z-~ )~c at fixed x; whereupon (4) and (5), with (8), 
become 

O= - •  0 ~ ) -  1+ (1 + x ) ( 0 , +  02) ( t l )  3 1 

00 

0 = 1 n ( 0 2 / 0 1 )  + -1( '/'2 --  ~/12] - -  2(1  + x ) ( 0 2  - -  01) 2 5 " 2  5 " 1 1  (12) 

where 01 =N1/2r ' and 02 = N1/2r uations (11) and (12) determine the 
two branches 01(x) and 02(x) of a scaled coexistence curve, shown in 
Fig. 1. Alternatively, they determine the inverse function x(0 ). These 
scaling functions have the asymptotic properties 

0 1 ( x ) ~ 3 x e  3x:/2,  02(x)--~3x ( x +  oo) (13) 

O ~ ( x ) , - ~ l - ( 6 x )  1/2, 0 2 ( x ) ~ l + ( 6 x )  ~/2 (x-+O) (14) 

Fig. 1. 
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Scaled coexistence curve,  @=NI/2~ versus x=Nm(z-Z~).  The branch 0> 1 is 
ff2(x), the branch tp< 1 is Ol(x). The critical point is at t)= 1, x=0. 
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Now we apply the same scaling, (9) and (10), to the functional 
equation for the composition profile, and again let N ~  oo and Z--* Zc. 
Then (1) with (3) becomes 

(c' /c)N1/2A20=ln(O/O1)+1(Oz-Oz)-2(l  + x ) ( O - 0 1 )  (15) 

By (12), we may replace 01 by 02 on the right-hand side of (15). We also 
still have A20=0  when 0 = 0 1  or 02, just as we had A2~b = 0  in (1) when 
~b=~b' or ~b". The relevant solution of (15) is such that 0 ~ 0 1  or 02 as 
z ~ + oe. The solution 0 is a function of a scaled distance ~ = N -  1/4z. Thus, 
the change in 0 is small when z changes by 1; i.e., in the scaling regime the 
interface is diffuse; so the second difference A20 may be replaced by the 
second derivative d20/dz 2 or by N -1/2 d20/d~ 2. At the same time, in the 
same scaling regime, the function h in (6) becomes a scaled H(0) given by 

H(O ) = X3/2h((~) (16) 

---= 0 ln(0/0,) - 1  3 3 ( 0  - -  0~ )  "~ � 8 9  - -  0 2 )  - -  ( 0  - -  0 1 )  

- (1 + x ) ( 0 - 0 1 )  2 (17) 

Then 

dH/dO=ln(O/Ot)+1(O2-O~)-2( l  + x ) ( O - 0 1 )  (18) 

Because of (11) and (12) we may again replace 01 by 02 on the right-hand 
sides of (17) and (18), and H and dH/d 0 vanish at 0 = 01 and 0 = 02- 
Equation (15) for the profile is now 

(c'/c) d20/d( 2 = dH/dO (19) 

in scaled form. 
The original functional equation (1) for the profile, with (2) and (7), 

and with the second difference replaced by the corresponding second 
derivative, is (c'/c) kO dZq6/dz 2=  kT dh(~)/dqk, with k Boltzmann's constant. 
From this form of it, we see that the interfacial tension may be obtained 
as (9) 

a2a = (2e'kO/c) '/2 f'", [kTh((~)] 1/2 dO (20) 

But in this scaling regime, T--, O,--To. Then, from (10) and (16), 

a2a/kTc = (2c'/c)  1/z N 5/4,~V'(X) (21) 
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where X(x) is the scaling function 

Z(x) = f~2(~) H(Ip ) 1/2 d~ (22) 

with ~l(x), ffz(X), and H(~k) given by (11), (12), and (17). Equation (21), 
with (22), is the scaling formula we sought. 

The function X(x) may be obtained numerically from (22), with ff~(x) 
and ~2(x) from (11) and (12) (or Fig. 1), and H(ff) from (17). It is shown 
in Fig. 2. 

The critical behavior is found in the asymptotic limit x--+ 0. In this 
limit, from (14), (17), and (22), and with Y = f f - ~ l ,  

so 

S ( x )  ~ (12) - l / e  ~ 2(6x)~/2 yE2(6x)l/2-y]dy 

S ( x ) ~ 4 x / ~ x  3/2 (x-+O) 

(x-+O) (23) 

(24) 

Fig. 2. 
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Scaling function ,S(x) for the surface tension (solid curve). The critical point is at the 
origin. The dashed curve is the x--* 0 asymptote: Z(x)~ 4 ~ x 3/2. 
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This asymptote is shown as the dashed curve in Fig. 2. From (2), (9), (21), 
and (24), the surface tension in this limit is proportional to 
N-]/2(Tc-T)3/2, as already found in this version of the mean-field 
approximation.(1) 

In the other asymptotic limit, x ~ o o ,  we have from (13), (17), 
and (22), 

;? X(x) ~ 6 1/2 01/2(3x_~9)dtp=(6x/-~/5)xS/2 (x-~ vo) (25) 

Then, from (2), (9), and (21) again, the surface tension in this limit is 
proportional to ( T o - T )  5/2 and independent of N. That ~ would be 
independent of N in this limit was predictable from (2), (9), (10), and (13), 
according to which ~b' ~ 0  and ~b"~ 3 ( ) ~ - Z c ) ~ 3 ( 1 -  T/Tc). Thus, in this 
limit the dilute phase is essentially pure solvent, while the more concen- 
trated phase has a composition that is independent of N at fixed T. The 
surface tension, which mainly reflects differences between the two bulk 
phases, must thus also become independent of N at fixed T in this limit. 

The measurements of a by Shinozaki et al. (~~ were designed to probe 
the critical region, x ~ 0. We see from Fig. 2 that the low-x limit extends 
up t_o x ~ ,  there X(x)=2.2,  which is 10% higher than the asymptote 
4 x/2 x3/2= 2. The data of Shinozaki et al. were indeed taken mostly at 
x< �89  exceptions were some of the data on their sample of greatest N 
( ~ 1 x 104), which extended to x ,~ 0.9. At very large N it is hard to probe 
the critical region [N1/2(1- T/Tc)--* 0] because of the practical difficulty 
of making measurements at sufficiently small 1 - T/Tc. (1~ 

It would be of interest to extend such measurements to larger x. (but 
still in the scaling regime, N~> 1 and 1 -  T/Tc ~ 1), to obtain a larger part 

Fig. 3. 
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of the scaling function S(x ) .  It will p robably  not  be practical to reach the 
limit of very large x, where (in mean-field approximat ion)  X ( x ) ~  x 5/2. In 
Fig. 3 we see that  x -5 /2~ (x )  is still far from its asymptot ic  limit of 
6 ~/2/5 = 1.697... even when x is as large as 2.5. Thus, to see behavior  
corresponding to that  in (25) would probably  require x > 10, say. But to be 
in the scaling regime at all p robably  requires 1 - T/Tc < 3 x 10 2. Thus, to 
see the large-x behavior  of ~ would require N 1 / 2 > 2 x l O / 3 x l O  2 or 
N > 4  x 105, which is impractical. But it would be feasible to explore an 
intermediate range of x and to compare  the results, at least qualitatively, 
with the S ( x )  in Fig. 2. 

O n  the theoretical side, it is impor tant  to go beyond this version of  the 
mean-field theory to see what  effect the corrections have on the scaling of 
the interracial tension. Such correction (1'11'12) should change the power of 
1 - T/T~ in a in the critical limit (1 - T / T c ~ O  at fixed N~> 1) from 3/2 to 
1.26 and the power of N in that  limit f rom - 1/2 to - 0 . 4 ;  but  its effect in 
the noncritical limit (N ~ oc at fixed 1 - T/T~ ~ 1) is unknown.  Al though 
the present mean-field theory has - some  obvious defects, (1'13) the surface 
tension scaling to which it has led may  be the pro to type  of such scaling in 
more  sophisticated theories. 
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